What Worry Really Does to Your Brain

Reeling from the breakup of her marriage, Laura Hilgers had a lot on her mind. Then she started worrying about what all that worrying was doing to her brain.

By Laura Hilgers

If emotional stress could be measured on the Richter scale, mine would be hovering around 9.0—and it’s been that way since the day my husband of 23 years announced he wanted a divorce. I was blindsided by the news; if there had been warning signs, I’d missed them completely. A year and a half later, as we signed the divorce papers, I was still in shock.

So when I tuned in to NPR several months ago while driving home from my divorce attorney’s office, the last thing I wanted to hear about was a study linking midlife stress to dementia. The researchers had tracked 800 women in Gothenburg, Sweden, from 1968 to 2005, looking at how stress affected their health pre- and postmenopause. Over the course of the study, they uncovered a surprising finding: The women who reported major stressors—such as divorce, the death of a spouse, or a demotion or job loss—between ages 38 and 54 had a 21 percent increased risk of Alzheimer’s and a 15 percent increased risk of developing any kind of dementia. The more stressors, the higher the risk.

My first thought was, They have stress in Sweden?

My second thought: Oh, great. My marriage blows up, and now I have to worry about losing my mind?

My third thought: At least I’ll be in good company.

The fact is, I can’t name a single person who hasn’t been through something awful in midlife. Among my friends, several have weathered ugly divorces or serious marital troubles, others are dealing with their spouse’s or children’s addiction issues, and a few have lost their jobs. Even though the study focused specifically on middle age, stress at any stage of life may impact our Alzheimer’s risk, says Maria Norton, PhD, an associate professor at Utah State and one of the study’s authors. And women might not be the only ones affected: Early data from a 19-year study on men and women suggests that the link between stress and dementia may be similar for both sexes. Does this mean that our brains take a hit with every major life shakeup?

To find out, I got in touch with Robert Sapolsky, PhD, a neuroscientist at Stanford and the author of Why Zebras Don’t Get Ulcers, which explores the effects of long-term stress on the body and brain. Sapolsky explained that when we’re stressed, two areas of the brain crucial to learning and memory, the hippocampus and frontal cortex, are flooded with hormones called glucocorticoids, which help our body prioritize what’s most important in a crisis. These hormones maximize our strength and energy—in case we need to flee a predator, for example—while temporarily shutting down less essential functions, such as
maintaining connections between neurons in our brain. (You don't want to spend precious mental energy consolidating memories when you're trying to outrun a saber-toothed tiger.) But chronic stress has us releasing glucocorticoids nonstop. "As a result, the hippocampus and frontal cortex continually back-burner their housekeeping duties of cleaning up connections between neurons," says Sapolsky. Over time, that can cause these neurons to function poorly, potentially leaving us vulnerable to cognitive decline.

The big question—and one Rajita Sinha, PhD, a professor of psychiatry and neurobiology and director of the Yale Stress Center, gets a lot—is whether the brain can bounce back after periods of chronic stress. "Everyone wants to know if they can recover from the damage," says Sinha. "And actually, we think they can, but the extent to which neurons can be repaired is still not clear. We've learned that the brain is very dynamic in the way it can restore itself after stress." So while the neurons I may have damaged during my months of fretting might be damaged for good, it's possible that once the glucocorticoid flood subsides, the brain may begin creating new neural pathways and potentially even new neurons. (It's like taking a detour on a highway: You eventually get to the same place but by a different route.)

The key to getting back in tip-top neurological shape is, forgive the pun, a no-brainer. Research indicates that if we make a conscious effort to calm down after a traumatic event with a range of stress reduction techniques—cognitive-behavioral therapy, regular exercise, strong social support and mindfulness activities like yoga and meditation—we may help prevent further neural damage.

While the research on stress reduction and dementia is relatively new, some animal studies and a few small human trials have shown that certain strategies for calming down can help increase the number of the neurons and neural connections that make up gray matter. A Harvard study found that among a group of adults between ages 25 and 55, those who meditated and practiced yoga for about three hours per week over the course of eight weeks showed significant increases in gray matter of the left hippocampus, which helps facilitate our ability to store information and recall it later.

It's impossible to predict whether I'll dodge the Alzheimer's bullet, of course, but I'm glad to know that all my downward dogs, triangle poses and deep breaths are making my neurons happy. So I'll keep it up, look for other ways to soothe my mind and try to trust that somehow everything—including my neurons—will be okay.

From the July 2014 issue of *O, The Oprah Magazine*
Common psychosocial stressors in middle-aged women related to long-standing distress and increased risk of Alzheimer’s disease: a 38-year longitudinal population study

Lena Johansson, Xinxin Guo, Tore Hällström, Maria C Norton, Margda Waern, Svante Östling, Calle Bengtsson, Ingmar Skoog

ABSTRACT

Objective: To study the relation among psychosocial stressors, long-standing distress and incidence of dementia, in a sample of women followed from midlife to late life.

Design: Prospective longitudinal population study.

Participants: 800 women born in 1914, 1918, 1922 and 1930 who were systematically selected for a psychiatric examination at baseline, in 1968.

Primary and secondary outcome measures: 18 psychosocial stressors (eg, divorce, widowhood, work problems and illness in relative) were obtained at baseline. Symptoms of distress were measured according to a standardised question at each study wave. Dementia was diagnosed according to Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R) criteria based on information from neuropsychiatric examinations, informant interviews, hospital records, and registry data, and measured through the whole study period.

Results: During the 37 years of follow-up, 153 women developed dementia (104 of those had Alzheimer’s disease (AD)). Number of psychosocial stressors in 1968 was associated (HR, 95% CI) with higher incidence of dementia (1.15, 1.04 to 1.27) and AD (1.20, 1.07 to 1.35) between 1968 and 2005, in multivariate Cox regressions. Number of psychosocial stressors in 1968 was also associated (OR, 95% CI) with distress in 1968 (1.48, 1.32 to 1.67), 1974 (1.31, 1.17 to 1.46), 1980 (1.27, 1.11 to 1.45), 2000 (1.39, 1.14 to 1.70) and 2005 (1.35, 1.02 to 1.79), in multivariate logistic regressions. Number of psychosocial stressors (HR 1.17, 95% CI 1.03 to 1.33) and long-standing distress (1968–1974–1980) (HR 1.58, 95% CI 1.03 to 2.45) were independently associated with AD.

Conclusions: Our study shows that common psychosocial stressors may have severe and long-standing physiological and psychological consequences. However, more studies are needed to confirm these results and investigate whether more interventions such as stress management and behavioural therapy should be initiated in individuals who have experienced psychosocial stressors.
INTRODUCTION
Experiences of severe psychological stressors in adulthood (eg, combat, natural disasters and the Holocaust) are known to influence mental and physical health decades later. Mild psychosocial stressors are common and could be considered as part of normal life. The long-term consequences of these more common stressors remain unclear. Epidemiological studies in the elderly with the follow-ups of less than 10 years have reported that history of early parental death, death of spouse and psychosocial risk factors in childhood increase the risk of dementia or Alzheimer’s disease (AD). One explanation for the associations is that traumatic experiences may perhaps give rise to long-standing chronic distress many years after the trauma. This may lead to a cumulative burden to the brain with dysregulation in neuroendocrine systems. A study among Holocaust survivors found that higher levels of stress hormones remained decades after the traumatic experience.

We have previously reported that long-standing distress in midlife leads to long-term consequences decades later, such as increased risk of dementia, AD and structural brain changes. To our knowledge, no population study has examined whether number of psychosocial stressors in midlife increase the risk of dementia in late life, and whether this is modified by long-standing distress.

The aim of this study was to examine whether common psychosocial stressors in midlife were related to distress, late-life dementia and AD, in women followed over 38 years. We further aimed to examine whether experiences of psychosocial stressors modify the previously reported association between long-standing midlife distress and AD.

METHODS
Study population
This study is part of the Prospective Population Study of Women in Gothenburg, Sweden, which was initiated in 1968 with an examination of 1462 women (participation rate 90%) born in 1908, 1914, 1918, 1922 and 1930. The individuals were systematically sampled from the Swedish Population Registry based on specific birth dates in order to yield a representative sample at the ages studied. The follow-ups were performed in 1974, 1980, 1992, 2000 and 2005 with participation rates among survivors of 91%, 83%, 70%, 71% and 70%, respectively. The informed consent was obtained from all participants, in accordance with the provision of the Helsinki Declaration.

The current study included a subsample of 800 women who were systematically selected for a psychiatric examination in 1968. The women were aged 38 years (n=111), 46 years (n=309), 50 years (n=290) and 54 years (n=90). Among them, 713 participated in the follow-up examination in 1974, 639 in 1980, 472 in 1992, 368 in 2000 and 296 in 2005. Losses were mainly due to death.

Assessment of psychosocial stressors
At baseline 1968, 18 predefined psychosocial stressors were asked and rated by a psychiatrist during the psychiatric examination. These included divorce, widowhood, serious problem in children (eg, physical illness, death and abuse), extramarital childbirth, mental illness in spouse or first-degree relative, alcohol abuse in spouse or first-degree relative, physical illness or social problems related to husband, receiving help from Social Security, problem related to husband’s or own work (eg, lost work) and limited social network. Some of the stressors (physical illness, mental illness and alcohol abuse in spouse; serious problem and mental illness in child; work-related problems and limited social network) were rated in the last year before examination in 1968. The others were rated as occurring at any time prior to the examination in 1968.

Assessment of distress
Symptoms of distress were rated according to a standardised question in 1968, 1974, 1980, 2000 and 2005. The question was worded identically at each examination; “Have you experienced any period of distress (1 month or longer) in relation to circumstances in everyday life, such as work, health or family situation? Distress refers to feelings of irritability, tension, nervousness, fear, anxiety or sleep disturbances.” Participants were asked to choose between; 0=have never experienced any period of distress; 1=have experienced period/s of distress more than 5 years ago; 2=have experienced one period of distress during the last 5 years; 3=have experienced several periods of distress during the last 5 years; 4=have experienced constant distress during the last year or 5=have experienced constant distress during the last 5 years. In the current study, distress is defined as a rating of 3–5.

Psychiatric examinations
The psychiatric examinations were conducted in 1968, 1974, 1980 and 1992 by psychiatrists and in 2000 and 2005 by experienced psychiatric research nurses. The examinations were semistructured and included a comprehensive neuropsychiatric examination and an extensive battery of neuropsychiatric tests. Close informant interviews were conducted in 1992, 2000 and 2005. These included questions about changes in behaviour and intellectual functions and, in cases of dementia, age of onset and disease course. Medical records were collected from all inpatient and outpatient departments and general practitioners’ offices in Gothenburg. The Swedish Hospital Discharge Registry provided diagnostic information for all individuals discharged from hospitals on a nationwide basis since 1978.

Diagnosis of dementia
The diagnosis of dementia was based on information from psychiatric examinations, close informant interviews, medical record examinations and the Swedish
Hospital Discharge Registry. The diagnostic procedures have been described in detail previously. Dementia diagnosis at each examination was made according to the Diagnostic and Statistical Manual of Mental Disorders (DSM-III-R) based on the combined information from the psychiatric examination and the close informant interview. Dementia diagnoses for individuals lost to the follow-up were based on information from medical records evaluated by geriatric psychiatrists in consensus conferences, and information from the Swedish Hospital Discharge Registry.

AD was diagnosed according to the criteria of the National Institute of Neurological and Communicative Disorders and Stroke and the Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA). The criteria for vascular dementia (VaD) were similar to the criteria proposed by the National Institute of Neurological Disorders and Stroke and the Association Internationale pour la Recherche et l’Enseignement en Neurosciences (NINDS-IREN). VaD was thus diagnosed when there was a temporal relationship (within 1 year) between a history of acute focal neurological symptoms and signs (haemiparesis or motor aphasia) and the first symptoms of dementia. Other dementias were diagnosed when other causes were likely to have caused the dementia. Person-years were calculated from the date of the baseline examination to (1) the time of dementia onset; (2) the date of death; (3) the date of the last follow-up examination for participants in 2005 or (4) 31 December 2006 for surviving drop-outs.

Potential confounders and mediators
Information on education, socioeconomic status, marital status and work status was obtained at the examination in 1968, and information on blood pressure, antihypertensive medication use, coronary heart disease (CHD), diabetes mellitus, stroke, waist and hip circumferences, cigarette smoking and wine consumption was obtained at the examinations in 1968, 1974 and 1980. Education was dichotomised as compulsory (6 years for those born during 1914–1922 and 7 years for those born in 1930) versus more than compulsory education. Socioeconomic status was based on husband’s occupation for married women, and own occupation for unmarried women and was defined as higher middle, lower middle, skilled workers and unskilled workers. Marital status was classified as married and/or cohabiting versus single. Work status was measured as full-time work and/or part-time work versus no work outside home. Hypertension was defined as systolic blood pressure of 160 mm Hg or more, and/or diastolic blood pressure 95 mm Hg or more and/or taking antihypertensive medication. CHD was defined as angina pectoris according to the Rose criteria or documented history of myocardial infarction. Diabetes mellitus was defined as a diagnosis told by a doctor, death certificates, being on antidiabetes drugs or having two fasting blood glucose values of 7 mmol/L or more. Stroke was diagnosed based on information from the examinations and the Swedish Hospital Discharge Registry. High waist-to-hip ratio was defined as a ratio of waist and hip circumferences over 0.85. Cigarette smoking was defined as never, former or current smoker. Wine consumption was classified as none, less than once weekly and once weekly or more.

Statistical analyses
Logistic regressions were used to analyse the associations between number of psychosocial stressors in 1968 and report of distress in 1968, 1974, 1980, 2000 and 2005. The results are presented as ORs and 95% CIs in three separate models. The first model adjusts for age only. The second model adjusts for age, education, socioeconomic status, marital status, work status, hypertension, CHD, stroke, diabetes mellitus, waist-to-hip ratio, smoking and wine consumption. The third model adjusts for age and psychiatric family history, that is, mental illness in mother, father and/or sibling. (These three variables were then not counted as psychosocial stressors.)

Cox regressions were used to study the associations between number of psychosocial stressors and incidence of dementia and dementia subtypes. Associations are presented as HRs and 95% CIs, and model 1–3 adjust for the same covariates as listed above. The fourth model adjusts for age and long-standing midlife distress (ie, distress in all examinations 1968–1974–1980). Two interaction models were also added; (1) number of stressors × psychiatric family in relation to AD and (2) number of stressors × long-standing distress in relation to AD. Finally, we examined the associations between long-standing midlife distress and psychosocial stressors in relation to AD before and after age 75.

RESULTS
Characteristics of the 800 participants are given in table 1. The proportion of women who reported specific life stressors in 1968 are shown in table 2. Twenty-five per cent of the women reported one psychosocial stressor, 23% reported two stressors, 20% three stressors and 16% four or more stressors. The most frequently reported psychosocial stressor was mental illness in first-degree relative (mother 27%, father 19% and sibling 32%).

Four hundred and twenty-five participants died during the follow-up (mean age 79 years). From 1968 to 2006, 155 (19.1%) women developed dementia during 25 131 person-years of follow-up, including 104 with AD, 35 with VaD and 14 with other dementias. The mean time from the baseline examination in 1968 to dementia onset was 29 years (25 had dementia onset before 1992, 73 between 1992 and 2000 and 54 after 2000). Mean age of dementia onset was 78 years (45 had dementia onset before age 75 years and 108 after age 75 years).

Number of psychosocial stressors in 1968 was associated with distress in 1968, 1974, 1980, 2000 and 2005, after adjustment for potential confounders (table 3).
ORs were similar after further adjustment for psychiatric family history in model 3. Number of psychosocial stressors was associated with long-standing midlife distress (ie, distress in 1968–1974–1980) both in later born cohorts, born 1922 and 1930, (multiadjusted OR 1.32, 95% CI 1.14 to 1.52) and earlier born cohorts, born 1914 and 1918 (multiadjusted OR 1.58, 95% CI 1.30 to 1.94).

Number of psychosocial stressors in 1968 was associated with higher incidence of AD (HR 1.21, 95% CI 1.08 to 1.36) and all-type dementia (HR 1.15, 95% CI 1.05 to 1.27; table 4). The associations remained after adjusting for multiple confounders in model 2, psychiatric family history in model 3 and long-standing distress (ie, distress in 1968–1974–1980) in model 4. In the fourth model, long-standing distress (HR 1.58, 95% CI 1.01 to 2.46) and number of psychosocial stressors (HR 1.17, 95% CI 1.02 to 1.33) were independently associated with AD. There were no interactions between number of stressors and psychiatric family history in relation to AD (age-adjusted HR 1.05, 95% CI 0.75 to 1.45, p=0.79) or between number of stressors and long-standing distress in relation to AD (age-adjusted HR 1.04, 95% CI 0.77 to 1.40, p=0.82). The association between number of psychosocial stressors and incidence of AD were similar in those with early onset AD (aged <75 years; multiadjusted HR 1.25, 95% CI 1.02 to 1.54) and late onset AD (aged ≥75 years; multiadjusted HR 1.19, 95% CI 1.03 to 1.38). There were no visible associations between number of psychosocial stressors and VaD in any of the models.

DISCUSSION

We found that number of common psychosocial stressors in midlife was associated with incidence of late-life dementia, especially AD, in a population-based sample of women followed for 38 years. The associations remained when controlling for long-standing distress. We also found that number of psychosocial stressors in 1968 was related to increased level of distress at every examination conducted between 1968 and 2005.

We have previously reported that long-standing distress in midlife increase risk of AD and structural brain changes. These findings are now extended by showing that number of psychosocial stressors and report of distress independently predicted AD, that is, increased distress could not completely explain the association between midlife stressors and dementia. One reason for this is that individuals respond differently to psychosocial stressors. Thus, biological responses may develop as a reaction to psychosocial stressors also in individuals who do not experience or report increased distress in association to the stressor.
There may be several biological explanations for the association between psychosocial stressors in midlife and dementia. One is related to the stress hypothesis. Stress may cause a number of physiological reactions in the central nervous, endocrine, immune and cardiovascular systems. Thus, psychological stress has been reported to increase the activity of the hypothalamic-pituitary-adrenal axis and the levels of glucocorticoid hormones, cause structural and functional damage to the hippocampus, influence learning and memory processes, increase the production of proinflammatory cytokines in the brain, increase the deposition of β-amyloid peptide and τ-protein in the brain and increase the frequency of cardiovascular disease and hypertension. All these factors have been linked to dementia.

The associations between psychosocial stressors reported in midlife and perceived distress later in life was consistent through all follow-up years, as indicated by ORs of similar magnitude. Thus, even common psychosocial stressors (related to work and family) can cause distress over several decades. Our finding is supported by studies reporting that stress-hormones may remain elevated many years after traumatic events. Another explanation is that experiences of psychosocial traumas might make an individual more vulnerable to future stressors due to biological changes and dysfunctional stress coping mechanisms.

Strengths and weaknesses of the study

The strengths of this study include midlife report of psychosocial stressors occurring long before the onset of dementia, the long follow-up period, the representative population and that multiple sources of information were used to detect and diagnose dementia. Some methodological issues need to be considered. First, the rating of stressors was related to the last year for some stressors and at any time before 1968 for other stressors. However, both these were related to the outcome in a similar way (data not shown). Second, some stressors were of a short duration, while others were chronic and lasted for many years. In addition, some stressors were severe and others more trivial. This might give an unbalanced weight among the factors studied. Third, we only have information on a limited number of psychosocial stressors in our population. Some events were not included, for example, physical abuse and own severe physical illness. The relationships might thus have been confounded by unmeasured factors. However, it is not likely that this had any major influence on our findings.

Table 3

<table>
<thead>
<tr>
<th>Cases, n (%)</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distress in 1968</td>
<td>148 (18.5)</td>
<td>1.46 (1.30 to 1.63)</td>
<td>1.49 (1.31 to 1.70)</td>
<td>1.61 (1.22 to 2.13)</td>
</tr>
<tr>
<td>Distress in 1974</td>
<td>161 (20.1)</td>
<td>1.31 (1.18 to 1.46)</td>
<td>1.33 (1.17 to 1.50)</td>
<td>1.23 (1.05 to 1.44)</td>
</tr>
<tr>
<td>Distress in 1980</td>
<td>88 (11.0)</td>
<td>1.26 (1.10 to 1.43)</td>
<td>1.26 (1.08 to 1.47)</td>
<td>1.22 (1.00 to 1.50)</td>
</tr>
<tr>
<td>Distress in 2000</td>
<td>49 (6.1)</td>
<td>1.41 (1.17 to 1.72)</td>
<td>1.40 (1.13 to 1.74)</td>
<td>1.24 (0.95 to 1.64)</td>
</tr>
<tr>
<td>Distress in 2005</td>
<td>39 (2.6)</td>
<td>1.37 (1.05 to 1.80)</td>
<td>1.35 (1.00 to 1.85)</td>
<td>1.50 (1.05 to 2.20)</td>
</tr>
</tbody>
</table>

Logistic regression analyses presented as ORs with 95% CIs; model 1 adjust for age; model 2 adjust for age, education, socioeconomic status, marital status, work status at baseline (in 1968), and hypertension, CHD, stroke, diabetes mellitus, high waist-to-hip ratio, smoking, and wine consumption (in 1968–80); and model 3 adjust for age and psychiatric family history (mental illness in mother, father and/or sibling is not included in number psychosocial stressors).

Table 4

<table>
<thead>
<tr>
<th>Cases, n (%)</th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distress in 1968</td>
<td>148 (18.5)</td>
<td>1.46 (1.30 to 1.63)</td>
<td>1.49 (1.31 to 1.70)</td>
<td>1.61 (1.22 to 2.13)</td>
</tr>
<tr>
<td>Distress in 1974</td>
<td>161 (20.1)</td>
<td>1.31 (1.18 to 1.46)</td>
<td>1.33 (1.17 to 1.50)</td>
<td>1.23 (1.05 to 1.44)</td>
</tr>
<tr>
<td>Distress in 1980</td>
<td>88 (11.0)</td>
<td>1.26 (1.10 to 1.43)</td>
<td>1.26 (1.08 to 1.47)</td>
<td>1.22 (1.00 to 1.50)</td>
</tr>
<tr>
<td>Distress in 2000</td>
<td>49 (6.1)</td>
<td>1.41 (1.17 to 1.72)</td>
<td>1.40 (1.13 to 1.74)</td>
<td>1.24 (0.95 to 1.64)</td>
</tr>
<tr>
<td>Distress in 2005</td>
<td>39 (2.6)</td>
<td>1.37 (1.05 to 1.80)</td>
<td>1.35 (1.00 to 1.85)</td>
<td>1.50 (1.05 to 2.20)</td>
</tr>
</tbody>
</table>

Cox regression analyses presented as HRs with 95% CIs; model 1 adjust for age; model 2 adjust for age, education, socioeconomic status, marital status, work status at baseline (in 1968), and hypertension, CHD, stroke, diabetes mellitus, high waist-to-hip ratio, smoking, and wine consumption (in 1968–80) and model 3 adjust for age and psychiatric family history (mental illness in mother, father and/or sibling is not included in number psychosocial stressors), and; model 4 adjust for age and long-standing distress (in 1968–1980).
stressors in midlife and dementia. However, these risk factors would most likely decrease the possibility of finding associations in a study with the long follow-up, as may exert competing risk, and controlling for future factors might lead to an under-estimation. Eighth, psychiatric family history may have an impact on the predisposition to distress and dementia. However, after adjusting for psychiatric family history (i.e., mental illness in mother, father and/or sibling) the associations between the number of stressors was still associated with both long-standing distress, AD and all-type dementia. Ninth, cumulative attrition is a problem in the long-term follow-up studies. While this problem was, to some extent, alleviated by using medical records and the hospital registry data to diagnose dementia in those lost to follow-up, these sources probably underestimate the number of dementia cases. It should be noted, however, that almost all people in Sweden received their hospital treatment within the public healthcare system during the time of the study and that the Swedish Hospital Discharge Register covers the entire country. Furthermore, the number of demented women detected in the different age groups is what could be expected from other incidence studies. Finally, it is difficult to diagnose dementia subtypes on clinical grounds alone. Individuals with AD often have cerebrovascular disease and individuals with VaD often have concomitant AD pathology. Furthermore, cerebrovascular disease may influence the presence and severity of clinical symptoms of AD, and vice versa. It is thus often difficult to make a clear distinction between AD and VaD in patients with a history of stroke or cerebrovascular disease, on clinical grounds and at autopsy, and mixed types are probably common.

CONCLUSION

To conclude, psychosocial stressors in midlife were associated with incidence of AD and long-standing distress, over several decades. This suggests that common psychosocial stressors may have severe and long-standing physiological and psychological consequences. However, more studies are needed to confirm these results and investigate whether more interventions such as stress management and behavioral therapy should be initiated in individuals who have experienced psychosocial stressors.

Author affiliations
1Neuropsychiatric Epidemiology Unit, Institute of Neuroscience and Physiology, Sahlgrenska Academy at Gothenburg University, Mölndal, Sweden
2Department of Clinical Neuroscience, Section for Psychiatry/Huddinge, Karolinska Institutet, Stockholm, Sweden
3Department of Family Consumer and Human Development and Departments of Psychology, Utah State University, Logan, USA
4Sahlgrenska School of Public Health and Community Medicine, Section for Public Health Epidemiology, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden

Acknowledgements
The authors would like to thank all members of the Prospective Population Study of Women in Gothenburg study groups for their cooperation in data collection and management and Valter Sundh for statistical assistance.

Contributors
All authors participated in the interpretation of data, wrote and critically reviewed the paper. LJ, XG and IS designed the study, generated the hypothesis, and wrote the draft. LJ did the analyses. All authors had full access to the data. LJ is the guarantor.

Funding
The Swedish Medical Research Council; the Swedish Council for Working Life and Social Research; the Alzheimer’s Association Zenith Award; the National Institutes of Health/National Institutes on Aging; the Alzheimer’s Association Stephanie B. Overstreet Scholars The Bank of Sweden Tercentenary Foundation, Swedish Brain Power; Stiftelsen Söderström-Königska Sjukhemmet; Stiftelsen för Gama Tjänarinnor; Handländen Hjalmar Svenssons Forskningsfond; Stiftelsen Professor Bror Gadelus’ Minnesfond and the Sahlgrenska Academy, University of Gothenburg.

Competing interests
None.

Ethics approval
The Ethics Committee of Gothenburg University approved the study.

Provenance and peer review
Not commissioned; externally peer reviewed.

Data sharing statement
No additional data are available.

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

REFERENCES

Common psychosocial stressors in middle-aged women related to longstanding distress and increased risk of Alzheimer's disease: a 38-year longitudinal population study

Lena Johansson, Xinxin Guo, Tore Hällström, Maria C Norton, Margda Waern, Svante Östling, Calle Bengtsson and Ingmar Skoog

BMJ Open 2013 3:
doi: 10.1136/bmjopen-2013-003142

Updated information and services can be found at: http://bmjopen.bmj.com/content/3/9/e003142

These include:

Supplementary Material
Supplementary material can be found at: http://bmjopen.bmj.com/content/suppl/2013/10/10/bmjopen-2013-003142.DC1.html

References
This article cites 32 articles, 5 of which you can access for free at: http://bmjopen.bmj.com/content/3/9/e003142#BIBL

Open Access
This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/3.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
- Press releases (97)
- Epidemiology (1108)
- Mental health (322)
- Neurology (225)
- Pathology (29)

Notes

To request permissions go to: http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to: http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to: http://group.bmj.com/subscribe/